RESUMEN.
Comparación de Regresión y Modelos de Redes Neuronales para Estimar la Radiación Solar

Mónica Bocco1*, Enrique Willington1, and Mónica Arias2
 

La radiación solar incidente en el suelo es una variable importante usada en aplicaciones agronómicas, además es relevante en hidrología, meteorología y física del suelo, entre otros. Para estimarla se han desarrollado modelos empíricos que utilizan distintos parámetros meteorológicos y, recientemente, modelos de pronóstico y predicción basados en técnicas de inteligencia artificial tales como redes neuronales. El objetivo de este trabajo fue desarrollar modelos lineales y de redes neuronales, del tipo perceptrón multicapa, para estimar la radiación solar global diaria y comparar la eficiencia de los mismos en su aplicación para una región de la Provincia de Salta, Argentina. Se utilizaron datos de heliofanía relativa, temperaturas máxima y mínima, precipitación, precipitación binaria y radiación solar astronómica provistos por la Estación Experimental Salta, Instituto Nacional de Tecnología Agropecuaria (INTA), Argentina, correspondientes al período 1996-2002. Tanto para los modelos de redes neuronales como para las regresiones lineales se consideraron tres alternativas de combinaciones de los parámetros meteorológicos, obteniéndose buenos resultados con ambas metodologías de predicción, con valores de la raíz del error cuadrático medio variando desde 1.99 a 1.66 MJ m-2 d-1 y coeficientes de correlación de 0.88 a 0.92. Se concluye que ambos, los modelos de redes neuronales y las regresiones lineales, pueden ser usados para predecir en forma adecuada la radiación solar global diaria; si bien las redes neuronales produjeron mejores resultados.

Palabras Claves: modelos, predicción, regresiones lineales, perceptrón multicapa.
1Universidad Nacional de Córdoba, Facultad de Ciencias Agropecuarias, CC 509-5000 Córdoba, Argentina. *Corresponding author (mbocco@gmail.com).
2Universidad Nacional de Salta, Facultad de Ciencias Naturales, 4400 Salta, Argentina.