ABSTRACT
Drought Tolerance in Recombinant Chromosome Substitution Lines (RCSLs) Derived from the Cross Hordeum vulgare subsp. spontaneum (Caesarea 26-24) ×| Hordeum. vulgare subsp. vulgare cv. Harrington

Luis Inostroza1, Alejandro del Pozo2*, Iván Matus1 and Patrick Hayes3
 

Grain yield (GY) and drought tolerance of recombinant chromosome substitution lines (RCSLs) derived from the cross between Hordeum vulgare L. subsp. spontaneum (K. Koch) Thell. and H. vulgare L. subsp. vulgare cv. Harrington, were studied in two contrasting environments, one with water stress (WWS) and the other with no water stress (NWS), during three growing seasons, 2004-2005, 2005-2006 and 2006-2007. In the first season 80 RCSLs were sowed and in the following a selection of 13 RCSLs. An a-lattice design was used in all the experiments. With the data of GY obtained in sites WWS and NWS it was calculated the drought sensitivity index (DSI). During 2004-2005 growing season GY varied greatly among locations, reflecting differences in water availability. The average GY of the 80 RCSLs was 4.4 and 8.0 Mg ha-1 in sites WWS and NWS, respectively. The DSI varied between genotypes from 0.24 to 1.53. Furthermore, the DSI was negative and significantly correlated with the grain yield obtained in the WWS site and allowed to select a group of genotypes tolerant and other sensitive to drought. The group of drought tolerant genotypes yielded in WWS 18, 12 and 17% more than the sensitive ones, in 2004-2005, 2005-2006 and 2006-2007 seasons, respectively.

Keywords: barley, drought sensitivity index, grain yield water stress, genotype.
1 Instituto de Investigaciones Agropecuarias, Centro Regional de Investigación Quilamapu, Casilla 426, Chillán, Chile
2 Universidad de Talca, Facultad de Ciencias Agrarias, Casilla 747, Talca, Chile. E-mail: adelpozo@utalca.cl *Author for correspondence
3 Oregon State University, Department of Crop and Soil, >Corvallis, Oregon, 97331-3002, USA.